NDT Solutions
Non-destructive testing (NDT) refers to a wide range of inspection or testing methods that allow inspectors to evaluate and collect data about materials, components, welds, systems, or assemblies without permanently altering or damaging them.
Waygate Technologies is a global leader in non-destructive testing products for use in your industrial NDT, NDE, or NDI inspection processes. Our product offerings include state-of-the-art NDT equipment and service solutions to power your radiographic, eddy current, ultrasonic, and remote visual inspection tasks.
We provide the best detection performance and drive technological innovations, making us the reliable partner of choice for our customers in the aerospace, electronics, automotive, battery, additive manufacturing, and energy industries.
Perform efficient, reliable NDT inspections using advanced radiography and CT equipment.
Ultrasonic flaw detectors, thickness gauges, transducers, probes, automated testing systems, and more.
Video borescopes, fiberscopes, Pan Tilt Zoom (PTZ) cameras, and more.
Electromagnetic flaw detectors, eddy current testing probes, transducers, and accessories.
Non-Destructive Testing (NDT) also known as Non-Destructive Examination (NDE) refers to any type of non-invasive inspection technology used to inspect an object without damaging it in any way.
While there are several types of NDT/NDE, it is generally understood that these methods are capable of identifying the presence of damage or the mechanisms that may cause damage such as cracks, corrosion, ineffective welds, part misalignment, and so on.
As the name would suggest, Destructive Testing does in fact damage the sample in question, typically through deformation as the result of a stress test for tensile strength, bend strength, mechanical cutting, or the like. Non-Destructive Testing, as stated earlier, allows you to test your part without causing any damage as a result of testing or inspection.
This allows you to preserve your production sample, or in the case of equipment that is already in service, to keep that equipment if it is deemed to be fit. Destructive testing will result in an unusable part by virtue of the testing process, even if it was free of defects prior to testing.
Non-destructive testing brings with it many advantages over traditional testing methodologies. NDT can save your organization time and money in many ways, such as:
There are numerous applications where non-destructive testing makes sense, but industries that rely on NDT to a large degree are:
While there is no single solution that trumps all other non-destructive testing technologies, some do lend themselves to specific tasks, such as Computed Tomography (CT) for casting, 3D printing, and additive manufacturing, ultrasoundfor corrosion management, or eddy current testing for coating thickness, welds, heat treatment, and the like.
While there are several resources available for non-destructive testing training, Waygate Technologies offers NDT training across the broadest range of inspection methods, which are offered around the globe, or at a location of your choice.
Get your team up to speed on the latest in NDT today!
Radiographic testing - a form of non-destructive testing (NDT) - typically employs gamma or x-rays to examine manufactured parts for any flaws or defects that would otherwise go undetected with a visual inspection.
A two-part inspection solution, radiography employs a generator which, as the name implies, generates the X-rays that will pass through the sample, and a detector that captures the rays and the resulting image for inspection:
Popular solutions in the industrial space are portable, field-ready generator/detector solutions such as those used in the inspection of Oil & Gas pipelines, and the larger, laboratory and/or production floor X-ray inspection and computed tomography (CT) systems as seen in the Automotive, Aerospace, and Electronics Manufacturing industries, which offer a greater degree of precision.
Computed Tomography is another form of non-destructive testing (NDT) that uses hundreds of X-ray images to create three-dimensional models of the internal and external structures within a scanned sample.
There are three types of scanners associated with industrial CT scanning, cone-beam, line-beam, and fast gantry-based helix:
Typical tasks for which CT is suited include flaw detection, metrology, failure analysis, and the like.
One of the key benefits of modern industrial CT solutions is the ability to employ part-to-part or part-to-CAD comparison where two models are overlayed and/or compared: one being the CAD file or a reference scan from a known good sample, and the other being the production sample being scanned. This level of detail and reference greatly enhances the rate of flaw detection and can be used for reverse-engineering and geometric dimensioning.
Ultrasonic Testing (UT) is another form of non-destructive testing (NDT) that employs ultrasonic waves which are transmitted into materials and samples to detect flaws such as cracks and tears and to measure thickness - an important measurement for welds, seams, and corrosion prevention in pipelines.
Automated Ultrasonic Testing (AUT) refers to the use of UT technologies where the transducers and receivers are driven by a mechanical system that ensures consistent measurements as well as the ability to repeat the test over and over. One popular application of AUT is in pipeline inspection, where a system can be clamped around the outside of a pipe and then walked or piloted down the length of the pipe collecting data along the way for analysis.
Phased Array Ultrasonic Testing (PAUT) is a UT solution that employs a series of phased array probes that allow for the beam to be focused and swept without physically moving the probe - which allows for scanning in tighter locations where traditional single-element systems may not fit, or where motion is otherwise limited, thus resulting in a smaller scan size. PAUT is one of the best solutions for defect detection where time is of the essence, and scanner mobility is impaired or impossible while simultaneously increasing your Probability of Detection (POD).
Visual Inspection, the first and oldest form of non-destructive testing (NDT), is that which is done with the naked eye as the primary scanning “tool” if you will. Modern visual inspection solutions augment the technician's natural abilities by allowing them to inspect hard to reach or hard to see locations thanks to video borescopes, rigid and flexible borescopes, and even remotely operated vehicles (ROVs).
Many of these modern solutions also offer enhanced lighting, contrast, and other image transforms that aid in the detection of flaws, thus enhancing the technician's vision while still relying on their expertise to make the determination of what is flawed and what is not.
Eddy Current Testing (ECT) is a form of non-destructive testing (NDT) that employs electromagnetic induction to detect and define flaws in conductive materials. ECT is a great solution for checking surface and subsurface (i.e. underneath a coat of paint) conditions.
ECT transducers, at their core, are comprised of a coil of wire (i.e. an induction coil) and an alternating current which together form a magnetic field. When this coil is introduced to conductive materials, any opposing currents will be induced into the material and will be visible as eddy currents.
Any defect in the target material will manifest itself as a disruption in the eddy currents, which can then be measured by way of their changing impedance. It is this sort of non-visual confirmation of surface and subsurface defects that makes ECT perfect for weld inspection, fastener hole inspection, tube inspection, heat treatment verification, and even metal grade sorting.
Magnetic Particle Inspection (MPI) is a form of non-destructive testing (NDT) that, as the name implies, employs a magnetic field to detect surface and subsurface irregularities in ferromagnetic materials.
When a magnetic field is applied to the target sample, the piece can then be magnetized and any resultant irregularities in the material can be detected by the application of ferrous particles or ferrofluid and checking for areas where larger concentrations of the ferrous materials have gathered, thus indicating a deformity in the material.
Acoustic Emission Testing (AET), another form of non-destructive testing (NDT) relies on the use and measurement of acoustic waves when passed through a solid. What makes AET different from conventional ultrasonic testing (UT) and limited to a very specific sort of defect, is that the waves being detected are actually produced by the target material during a failure or stress event, and not from an outside generation source.
Due to this ability, AET is often used to detect defects during the manufacturing process, such as a crack during welding of a pipeline that may go undetected.
Liquid Penetrant Testing (LPT) also known as Dye Penetrant Inspection (DPI) is another form of non-destructive testing that is used to detect surface defects in non-porous materials requires the application of a penetrating liquid, usually an emulsifier, which is then exposed to a developer which pulls the penetrating liquid out from any surface defect thus amplifying the presence of a defect through a concentration in the appearance of the penetrating liquid on the surface of the sample.
While inexpensive and relatively simple to deploy, LPT requires a clean surface, protective clothing, and proper ventilation, and results in a detection level only slightly higher than visual, with proper LPT training of the technician. One should also consider what methods are used in the cleaning of your target materials prior to LPT as some surface prep methods can interfere with the test thus skewing your results.
Leak Testing is another simple form of non-destructive testing (NDT) that does just what the name implies: it tests a given manufactured part to make sure fluids or gases aren’t escaping from any unintended paths.
There are several forms of Leak Testing from total submersion (i.e. the “bubble test”) to helium leak testing, pressure decay, vacuum decay, flow monitoring, and thermography.
This method of testing is widely used across multiple industries where leaks could be a problem, from automotive, oil & gas, to consumer packaged goods (CPG), medical, and waterproof electronics.
Our wide range of non-destructive testing (NDT) solutions represent the best NDT technologies available today, for virtually any application across a wide array of industries.
Read through any one of our case studies below to see how we can bring value to your NDT programs today.
Gantry-based CT scanning for optimized testing.
Predictive Corrosion Management for TSA coated pipes.
See how RVI is revolutionizing aviation inspection.
See how Mentor Visual iQ adds real value to Power Generation.
Non-destructive testing (NDT)Waygate Technologiesthe reliable partner of choiceNon-Destructive Testing (NDT)Non-Destructive Examination (NDE) identifying the presence of damage or the mechanisms that may cause damageDestructive Testing does in fact damage the sampleDestructive testing will result in an unusable part by virtue of the testing process, even if it was free of defects prior to testing.No wasted samplesNo removal of parts or production shut down in some cases Predictive maintenanceBetter end products AerospaceAutomotiveOil & GasPower GenerationMetals & CastingElectronics & BatteryAdditive ManufacturingResearch & Development Computed Tomography (CT) ultrasoundeddy current testingWaygate Technologies offers NDT training across the broadest range of inspection methodsaround the globe, or at a location of your choicenon-destructive testing (NDT)generator detector Microfocus X-rayTube -Digital Detector Array - portable, field-ready generator/detector solutions Oil & Gaslaboratory and/or production floor X-ray inspection and computed tomography (CT) systemsAutomotiveAerospace,Electronics ManufacturingComputed Tomographynon-destructive testing (NDT)three types of scanners associated with industrial CT scanningCone-beam -Line-beam - Fast gantry-based helix CT - flaw detection, metrology, failure analysispart-to-part or part-to-CAD comparisonUltrasonic Testing (UT)non-destructive testing (NDT)Automated Ultrasonic Testing (AUT) Phased Array Ultrasonic Testing (PAUT) Visual Inspectionnon-destructive testing (NDT)Modern visual inspection solutions augment the technician's natural abilitiesenhanced lighting, contrast, and other image transformsEddy Current Testing (ECT) to detect and define flaws in conductive materials.a magnetic field.will be visible as eddy currentsmeasured by way of their changing impedancemakes ECT perfect for weld inspection, fastener hole inspection, tube inspection, heat treatment verification, and even metal grade sorting.Magnetic Particle Inspection (MPI)detected by the application of ferrous particles or ferrofluidAcoustic Emission Testing (AET), use and measurement of acoustic waves when passed through a soliddetect defects during the manufacturing processLiquid Penetrant Testing (LPT) Dye Penetrant Inspection (DPI) requires the application of a penetrating liquidwhich is then exposed to a developerresults in a detection level only slightly higher than visualsome surface prep methods can interfere with the testLeak Testing to make sure fluids or gases aren’t escaping from any unintended paths.several forms of Leak Testingwidely used across multiple industriesthe best NDT technologies available todaysee how we can bring value to your NDT programs today.